
SANDIA REPORT
SAND2009-6006
Unlimited Release
Printed September 2009

Parallel Contingency Statistics with Titan

Philippe Pébay and David Thompson

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

2

SAND2009-6006
Unlimited Release

Printed September 2009

Parallel Contingency Statistics with Titan

Philippe Pébay
Sandia National Laboratories

M.S. 9159, P.O. Box 969
Livermore, CA 94551, U.S.A.

pppebay@sandia.gov

David Thompson
Sandia National Laboratories

M.S. 9159, P.O. Box 969
Livermore, CA 94551, U.S.A.

dcthomp@sandia.gov

Abstract

This report summarizes existing statistical engines in VTK/Titan and presents the recently par-
allelized contingency statistics engine. It is a sequel to [PT08] and [BPRT09] which studied the
parallel descriptive, correlative, multi-correlative, and principal component analysis engines.
The ease of use of this new parallel engines is illustrated by the means of C++ code snippets.
Furthermore, this report justifies the design of these engines with parallel scalability in mind;
however, the very nature of contingency tables prevent this new engine from exhibiting optimal
parallel speed-up as the aforementioned engines do. This report therefore discusses the design
trade-offs we made and study performance with up to 200 processors.

3

http://www.vtk.org/
http://www.sandia.gov/Titan/

Acknowledgments

The authors would like to thank:

• Tim Shead, for valuable technical discussions, in particular on–but not limited to–efficient
parallel communication of variable-length character strings,

• Brian Wylie, for his comments on the integration of scalable statistical tools in VTK/Titan.

4

http://www.vtk.org/
http://www.sandia.gov/Titan/

Contents
1 Introduction . 7

1.1 The Titan Informatics Toolkit . 7
1.2 Statistics Functionality in Titan . 8

2 Contingency Statistics . 12
2.1 Contingency Tables . 12
2.2 Joint and Marginal Distributions . 12
2.3 Conditional Probabilities . 13
2.4 Pointwise Mutual Information . 14
2.5 Information Entropy . 15

3 Parallel Statistics Classes . 17
3.1 Implementation Details . 17
3.2 Usage . 18

4 Results . 20
4.1 Algorithm Scalability . 20
4.2 Algorithm Correctness . 25

References . 27

5

http://www.sandia.gov/Titan/
http://www.sandia.gov/Titan/

This page intentionally left blank

6

1 Introduction

This report is a sequel to [PT08] and [BPRT09], which focused on the parallel descriptive, correl-
ative, multi-correlative, and principal component analysis engines; please refer to these references
for a detailed presentation of these engines as well as an assessment of their scalability and speed-
up properties.

1.1 The Titan Informatics Toolkit

The Titan Informatics Toolkit is a collaborative effort between Sandia National Laboratories and
Kitware Inc. It represents a significant expansion of the Visualization ToolKit (VTK) to support
the ingestion, processing, and display of informatics data. By leveraging the VTK engine, Titan
provides a flexible, component based, pipeline architecture for the integration and deployment of
algorithms in the fields of intelligence, semantic graph and information analysis.

Figure 1. A theoretical application built with Titan.

A theoretical application built from Titan/VTK components is schematized in Figure 1. The flexi-
bility of the pipeline architecture allows effective utilization of the Titan components for different
problem domains. An actual implementation is OverView, a generalization of the ParaView sci-
entific visualization application to support the ingestion, processing, and display of informatics
data. The ParaView client-server architecture provides a mature framework for performing scal-
able analysis on distributed memory platforms, and OverView will use these capabilities to analyze
informatics problems that are too large for individual workstations.

The Titan project represents one of the first software development efforts to address the merging
of scientific visualization and information visualization on a substantive level. The VTK parallel
client-server layer will provide an excellent framework for doing scalable analysis on distributed

7

http://www.sandia.gov/Titan/
http://www.sandia.gov/Titan/
http://www.vtk.org/
http://www.vtk.org/
http://www.sandia.gov/Titan/
http://www.sandia.gov/Titan/
http://www.vtk.org/
http://www.sandia.gov/OverView/
http://www.paraview.org/
http://www.paraview.org/
http://www.vtk.org/

memory platforms. The benefits of combining the two fields are already reaping rewards in the
form of functionality such as the cell lineage application below.

1.2 Statistics Functionality in Titan

A number of univariate, bivariate, and multivariate statistical tools have been implemented in Titan.
Each tool acts upon data stored in one or more tables; the first table serves as observations and
further tables serves as model data. Each row of the first table is an observation, while the form of
further tables depends on the type of statistical analysis. Each column of the first table is a variable.

1.2.1 Variables

A univariate statistics algorithm only uses information from a single column and, similarly, a
bivariate from 2 columns. Because an input table may have many more columns than an algorithm
can make use of, Titan must provide a way for users to denote columns of interest. Because it
may be more efficient to perform multiple analyses of the same type on different sets of columns
at once as opposed to one after another, Titan provides a way for users to make multiple analysis
requests of a single filter.

Table 1. A table of observations that might serve as input to a
statistics algorithm.

row port protocol row port protocol row port protocol

1 80 HTTP 8 1122 HTTP 15 80 SMTP
2 80 HTTP 9 80 HTTP 16 20 FTP
3 80 HTTP 10 25 SMTP 17 20 FTP
4 80 HTTP 11 25 SMTP 18 20 FTP
5 80 HTTP 12 25 SMTP 19 122 FTP
6 80 HTTP 13 25 SMTP 20 20 FTP
7 8080 HTTP 14 25 SMTP 21 20 FTP

As an example, consider Table 1, containing a sample of 21 observations of network traffic across
an interface, characterized in terms of (port,protocol) pairs. One can calculate univariate statis-
tics on each of the columns of this table, or bivariate statistics using any pair of these columns
(including the row index column itself).

8

http://www.sandia.gov/Titan/
http://www.sandia.gov/Titan/
http://www.sandia.gov/Titan/
http://www.sandia.gov/Titan/

1.2.2 Phases

Each statistics algorithm performs its computations in a sequence of common phases, regardless
of the particular analysis being performed. These phases can be described as:

Learn: Calculate a “raw” statistical model from an input data set. By “raw”, we mean the minimal
representation of the desired model, that contains only primary statistics. For example, in
the case of descriptive statistics: sample size, minimum, maximum, mean, and centered M2,
M3 and M4 aggregates (cf. [P0́8]).

Derive: Calculate a “full” statistical model from a raw model. By “full”, we mean the complete
representation of the desired model, that contains both primary and derived statistics. For
example, in the case of descriptive statistics, the following derived statistics are calculated
from the raw model: unbiased variance estimator, standard deviation, and two estimators (g
and G) for both skewness and kurtosis.

Assess: Given a statistical model – from the same or another data set – mark each datum of a
given data set. For example, in the case of descriptive statistics, each datum is marked with
its relative deviation with respect to the model mean and standard deviation (this amounts to
the one-dimensional Mahalanobis distance).

Figure 2. An example utilization of Titan’s statistics algorithms
in OverView.

An example of the utilization of Titan’s statistical tools in OverView is illustrated in Figure 2;
specifically, the descriptive, correlative, and order statistics classes are used in conjunction with
various table views and plots. With the exception of contingency statistics which can be performed

9

http://www.sandia.gov/Titan/
http://www.sandia.gov/OverView/
http://www.sandia.gov/Titan/
http://www.sandia.gov/OverView/

on any type (nominal, cardinal, or ordinal) of variables, all currently implemented algorithms
require cardinal or ordinal variables as inputs.

At the time of writing, the following algorithms are available in Titan:

1. Univariate statistics:

(a) Descriptive statistics:

Learn: calculate minimum, maximum, mean, and centered M2, M3 and M4 aggre-
gates;

Derive: calculate unbiased variance estimator, standard deviation, skewness (12 and
G1 estimators), kurtosis (g2 and G2 estimators);

Assess: mark with relative deviations (one-dimensional Mahlanobis distance).

(b) Order statistics:

Learn: calculate histogram;
Derive: calculate arbitrary quartiles, such as “5-point” statistics (quartiles) for box

plots, deciles, percentiles, etc.;
Assess: mark with quartile index.

2. Bivariate statistics:

(a) Correlative statistics:

Learn: calculate minima, maxima, means, and centered M2 aggregates;
Derive: calculate unbiased variance and covariance estimators, Pearson correlation co-

efficient, and linear regressions (both ways);
Assess: mark with squared two-dimensional Mahlanobis distance.

(b) Contingency statistics:

Learn: calculate contingency table;
Derive: calculate joint, conditional, and marginal probabilities, as well as information

entropies;
Assess: mark with joint and conditional PDF values, as well as pointwise mutual in-

formations.

3. Multivariate statistics:

These filters all accept multiple requests Ri, each of which is a set of ni variables upon which
simultaneous statistics should be computed.

(a) Multi-Correlative statistics:

Learn: calculate means and pairwise centered M2 aggregates;
Derive: calculate the upper triangular portion of the symmetric ni×ni covariance ma-

trix and its (lower) Cholesky decomposition;
Assess: mark with squared multi-dimensional Mahlanobis distance.

10

http://www.sandia.gov/Titan/

(b) PCA statistics:

Learn: identical to the multi-correlative filter;
Derive: everything the multi-correlative filter provides, plus the ni eigenvalues and

eigenvectors of the covariance matrix;
Assess: perform a change of basis to the principal components (eigenvectors), op-

tionally projecting to the first mi components, where mi ≤ ni is either some user-
specified value or is determined by the fraction of maximal eigenvalues whose sum
is above a user-specified threshold. This results in mi additional columns of data
for each request Ri.

(c) K-Means statistics:

Learn: calculate new cluster centers for data using initial cluster centers. When initial
cluster centers are provided by the user using an additional input table, multiple
sets of new cluster centers are computed. The output metadata is a multiblock
dataset containing at a minimum one vtkTable with columns specifying the fol-
lowing for each run: the run ID, number of clusters, number of iterations required
for convergence, RMS error associated with the cluster, the number of elements in
the cluster, and the new cluster coordinates.

Derive: calculates the global and local rankings amongst the sets of clusters computed
in the learn phase. The global ranking is the determined by the error amongst all
new cluster centers, while the local rankings are computed amongst clusters sets
with the same number of clusters. The total error is also reported;

Assess: mark wth closest cluster id and associated distance for each set of cluster cen-
ters.

In the following sections, we present implementation details on the parallel version of the contin-
gency statistics algorithm, provide a basic user manual thereof, and examine its correctness as well
as its parallel speed-up properties.

11

2 Contingency Statistics

In this section, we present a brief refresher on contingency statistics, and their relationship to
conditional probabilities, pointwise mutual information, and information entropy.

2.1 Contingency Tables

Definition 2.1. A two-way contingency table is a tabular representation of categorical data, which
shows counts or frequencies for particular combinations of values of two discrete random variables
X1 and X2. Each cell in the table represents a mutually exclusive pair of (X1,X2) realization.

In this report as well as in the implementation of contingency statistics in Titan, we will make use
of counts and not of frequencies, as input data tables comprise realizations of (X ,Y) and thus are
directly amenable to occurrence counting.

Example 2.1. The sample given in Table 1 of § 1.2.1 can be summarized by the means of the
following two-way contingency table:

port,protocol HTTP FTP SMTP
20 0 5 0
25 0 0 5
80 7 0 1
122 0 1 0
1122 1 0 0
8080 1 0 0

which reflects the fact that the categorical variables port and protocol respectively exhibit 6 and 3
different outcomes. Also note that the sum of all counts indeed amounts to the sample size, 21,
also called grand total. Normalizing the contingency table with respect to the grand total yields
frequencies as opposed to counts.

Remark 2.1. The concept of contingency table is extended in a straightforward fashion for n ran-
dom variables (Xi)1≤i≤n fashion to n-way contingency tables, where counts for each mutually
exclusive pair of (X1, . . . ,Xn) realization are stored. This is what we will mean by contingency
tables in this report as well as in the implemenation.

2.2 Joint and Marginal Distributions

A joint frequency distribution for the pair (X ,Y) can be obtained from the contingency table of
these two variables, by normalizing the table by its grand total. This joint frequency distribution

12

http://www.sandia.gov/Titan/

may be viewed as nn empirical joint probability distribution for the pair (X ,Y) which, in turn,
can be marginalized with respect to either of the random variables, as follows for the marginal
distribution of X :

pX(x) = ∑
y∈Y (ω)

pX ,Y (x,y)

where Y (ω) denotes the set of all outcomes of Y . The corresponding formula for pY is obtained by
switching X and Y :

pY (y) = ∑
x∈X(ω)

pX ,Y (x,y).

Example 2.2. The contingency table of Example 2.1 results in the following joint and marginal
probabilities (with 3 significant digits):

pport,protocol HTTP FTP SMTP pport

20 0 0.238 0 0.238
25 0 0 0.238 0.238
80 0.333 0 0.0476 0.381
122 0 0.0476 0 0.0476
1122 0.0476 0 0 0.0476
8080 0.0476 0 0 0.0476

pprotocol 0.429 0.286 0.286

The rightmost column and bottom-most row are marginal probabilities while the 6×3 matrix in the
interior is the joint frequency distribution. This table indicates that, relative to the observed data
set, (80,HTTP) is a highly probable outcome, whereas (80,SMTP), (122,FTP), (1122,HTTP)
and (8080,HTTP) have a much lower probability of occurrence. Is this sufficient to assert that,
for instance, (80,HTTP) is a normal event, whereas any of the low probability events is abnormal
and should be labeled as such? Evidently not, as, for instance, (8080,HTTP) is known to be a
normal pairing–it is just that the HTTP protocol is mostly used over port 80. This is an example
of an important principle: a low joint probability does not mean that the variable values are not
associated; it may simply be an indication that the co-occurrence is infrequent. Infrequent events
may still be strongly associated.

2.3 Conditional Probabilities

Recall that, given two random variables X and Y , the conditional probability of y given x is the
probability of a realization y of Y given the occurrence of a realization x of X , and is

pY |X(y|x) :=
pX ,Y (x,y)

pY (x)
,

13

provided p(x) 6= 0, and is undefined otherwise. Similarly,

pX |Y (x|y) :=
pX ,Y (x,y)

pX(y)
,

provided p(y) 6= 0, and is undefined otherwise. Therefore, the knowledge of the joint (and, as a
result, marginal) probability distributions of X and Y is all that is needed calculate the conditional
probabilities of X |Y and Y |X .

Example 2.3. Using the joint and marginal distributions found in Example 2.2, one finds the fol-
lowing conditional probabilities for protocol—port and port—protocol (with 3 significant digits):

pprotocol|port HTTP FTP SMTP
20 0 1 0
25 0 0 1
80 0.875 0 0.125
122 0 1 0
1122 1 0 0
8080 1 0 0

pport|protocol HTTP FTP SMTP
20 0 0.833 0
25 0 0 0.833
80 0.778 0 0.167
122 0 0.167 0
1122 0.111 0 0
8080 0.111 0 0

First, one readily notices that pprotocol|port essentially summarizes the fact that, when the port is
known, then so is the protocol, with the exception of port 80. This is useful because, amongst the
four aforementioned events with the lowest joint probability (0.0476), there is something funda-
mentally different about (80,SMTP). On the other hand, pprotocol|port does not distinguish between
(1122,HTTP) and (20,FTP) but pport|protocol clearly discriminates between these two cases, for it
exhibits a much more fine-grained range of probability values. For instance, if one uses the condi-
tion pport|protocol < 0.2 as a classifier for unlikely associations, then one will retrieve the four low
joint probability events. This criterion based on conditional probabilities is more nuanced than any
the joint probability table can express for it discrimantes between (80,SMTP) and (8080,HTTP)
– albeit not in the desired way. So, while pport|protocol appears to convey more information than
pprotocol|port, it would still be desireable to combine them.

2.4 Pointwise Mutual Information

Recall the definition of the pointwise mutual information, which is a measure of association be-
tween realizations of discrete random variables. This satisfies the need we have noticed to combine
both conditional probabilities:

Definition 2.2. The pointwise mutual information of a realization (x,y) of a pair of discrete random
variables (X ,Y) is defined as:

pmi(x,y) := log
p(X ,Y)(x,y)
pX(x)pY (y)

,

14

where pX , pY , and p(X ,Y) respectively denote the probability density functions of X , Y , and (X ,Y),
for all possible outcomes of X and Y , and setting pmi to −∞ when the joint probability vanishes.

In other words, pointwise mutual information can also be defined as follows:

pmi(x,y) := log
pY |X(y|x)pX |Y (x|y)

p(X ,Y)(x,y)
,

Therefore, mutual independence of the random variables x and y makes their pointwise mutual
information to vanish everywhere.

Example 2.4. Continuing with Example 2.2, we obtain the following pointwise mutual informa-
tions (again with 3 significant digits:

HTTP FTP SMTP
20 −∞ 1.26 −∞

25 −∞ −∞ 1.26
80 0.714 −∞ −0.827
122 −∞ 1.26 −∞

1122 0.847 −∞ −∞

8080 0.847 −∞ −∞

In particular, one now has pmi(80,SMTP)≈−0.827, whereas all of the three other low-probability
pairs, (122,FTP), (1122,HTTP) and (8080,HTTP), all have a have a positive pointwise mutual
information; in fact, for the last two, the pmi is higher than that of the most probable event itself,
(80,SMTP).

What this indicates is that there is a weak association between port 80 and protocol SMTP, relative
to the association between port 80 and protocol HTTP; on the other hand, for the rarely occurring
ports (122, 1122, and 8080), there are not enough observations for us to conclude much about their
regular associations and thus nothing obvious appears. So, if used as a classifier, pointwise mutual
information pinpoints that there is something fundamentally different between the (80,SMTP) and
the other (equally) low-probability outcomes.

2.5 Information Entropy

First, recall that:

Definition 2.3. The information entropy of a discrete random variable X is defined as:

H(X) :=−∑x∈X(ω)pX(x) logb pX(x), (2.1)

where pX is the probability density function of X and b is the base of the logarithm; in particular,
when b = 2 (resp. b = e, b = 10), the unit of information entropy is the bit (resp. nat, digit).

15

Information is used as a measure of the uncertainty associated with a random variable. For instance,
a random variable which can only take on a single value, with probability 1, has a zero information
entropy. The notion of information entropy is extended to conditional probability as follows:

Definition 2.4. The conditional information entropy of a discrete random variable Y given a dis-
crete random variable X is defined as:

H(Y |X) := ∑x∈X(ω)pX(x)H(Y |X = x)

which, when combined with (2.1), amounts to:

H(Y |X) =−∑x∈X(ω),y∈Y (ω)pX ,Y (x,y) logb pY |X(y|x),

with the same notations as previously used throughout this section.

In everything that follows, we will use b = e, which appears to be the most commonly used con-
vention to express information entropies.

Example 2.5. Ending with our running Example 2.2, we thus obtain the following information
entropies:

H(port,protocol) = 1.62949
H(protocol|port) = H(Y |X) = 0.143531
H(port|protocol) = H(X |Y) = 0.550495.

These values show in particular that the knowledge of the port informs much more about the
protocol than the knowledge of the protocol does about the port.

16

3 Parallel Statistics Classes

3.1 Implementation Details

The purpose of building a full statistical model in two phases is parallel computational efficiency.
In our approach, inter-processor communication and updates are performed only for primary statis-
tics. The calculations to obtain derived statistics from primary statistics are typically fast and sim-
ple and need only be calculated once, without communication, upon completion of all parallel
updates of primary variables. Data to be assessed is assumed to be distributed in parallel across
all processes participating in the computation, thus no communication is required as each process
assesses only its own resident data.

Therefore, in the parallel versions of the statistical engines, inter-processor communication is re-
quired only for the Learn phase, while both Derive and Assess are executed in an embarrassingly
parallel fashion due to data parallelism. This design is consistent with the data-parall methodol-
ogy used to enable parallelism within VTK and ParaView. Because the focus of this report is on
the parallel speed-up properties of statistics engines, we will not report on the Derive or Assess
phases, as these are executed independently from each other, on a separate process for each part of
the data partition. However, because the Derive phase provides the derived quantities to which one
is naturally accustomed (e.g., variance as opposed to M2 aggregate), the numerical results reported
here are those that are yielded by the consecutive application of the Learn and then Derive phases.

At this point (September 2009) of the development of scalable statistics algorithms in Titan, the
following 6 parallel classes are implemented:

1. vtkPDescriptiveStatistics;

2. vtkPCorrelativeStatistics;

3. vtkPMultiCorrelativeStatistics;

4. vtkPPCAStatistics.

5. vtkPContingencyStatistics.

6. vtkPKMeansStatistics.

Each of these parallel algorithms is implemented as a subclass of the respective serial version of
the algorithm and contains a vtkMultiProcessController to handle inter-processor commu-
nication. Within each of the parallel statistics classes, the Learn phase is the only phase whose
behavior is changed (by reimplementing its virtual method) due to the data parallelism inherent in
the Derive and Assess phases. The Learn phase of the parallel algorithms performs two primary
tasks:

1. Calculate correlative statistics on local data by executing the Learn code of the superclass.

17

http://www.vtk.org/
http://www.paraview.org/
http://www.sandia.gov/Titan/

2. If parallel updates are needed (i.e. the number of processes is greater than 1), perform
necessary data gathering and aggregation of local statistics into global statistics.

The descriptive, correlative and multi-correlative statistics algorithms perform the aggregation nec-
essary for the statistics which they are computing using the arbitrary-order update and covariance
update formulas presented in [P0́8]. Similarly, the contingency statistics class derives from the
bivariate statistics class and implements its own aggregation mechanism for the Learn phase: the
global contingency table (cf. 2.1) must be created by aggregating the local contigency tables across
all processes participating in the calculation. However, unlike the case for the statistics algorithms
which rely on statistical moments (descriptive, correlative, multi-correlative, and PCA), this type
of aggregation operation is not embarrassingly parallel and, therefore, optimal parallel scale-up
should not be expected.

3.2 Usage

It is fairly easy to use the serial statistics classes of Titan; it is not much harder to use their parallel
versions. All that is required is a parallel build of Titan and a version of MPI installed on your
system.

For example, Listing 1 demonstrates how to calculate contingency statistics, in parallel, on 2 pairs
of columns of an input dataset inData of type vtkTable*, with no subsequent data assessment.
Requests for each pair of columns of interest are specified by calling AddColumnPair(), as is
done for all bivariate algorithms. It is assumed here the input data table has at least 3 columns. For
information as to the usage of univariate or multi-variate statistics classes, please refer to [PT08].

The examples thus far assume that you have already prepared an MPI communicator, loaded a
dataset into the inData object, and are running in a parallel environment. It is outside the scope of
this report to discuss I/O issues, and in particular how a vtkTable can be created and filled with
the values of the variables of interest. See VTK’s online documentation for details [vtk].

In the code example from Listing 1, the vtkMultiProcessController object passed to Foo() is
used to determine the set of processes (which may be a subset of a larger job) among which input
data is distributed. VTK uses subroutines of this form to execute code across many processes. In
Listing 2 we demonstrate that, to prepare a parallel controller to execute Foo() in parallel using
MPI, one must first (e.g. in the main routine) create a vtkMPIController and pass it the address of
Foo(). Note that, when using MPI, the number of processes is determined by the external program
which launches the application.

18

http://www.sandia.gov/Titan/
http://www.sandia.gov/Titan/
http://www.vtk.org/
http://www.vtk.org/

void Foo(vtkMultiProcessController* controller, void* arg)
{
// Use the specified controller on all parallel filters by default:
vtkMultiProcessController::SetGlobalController(controller);

// Assume the input dataset is passed to us
// Also is assume that it has a least 3 columns
vtkTable* inData = static_cast<vtkTable*>(arg);

// Create parallel contingency statistics class
vtkPContingencyStatistics* pcs = vtkPContingencyStatistics::New();

// Set input data port
pcs->SetInput(0, inData);

// Select pairs of columns (0,1) and (0,2) in inData
pcs->AddColumnPair(inData->GetColumnName[0], inData->GetColumnName[1]);
pcs->AddColumnPair(inData->GetColumnName[0], inData->GetColumnName[2]);

// Calculate statistics with Learn and Derive phases only
pcs->SetLearn(true);
pcs->SetDerive(true);
pcs->SetAssess(false);
pcs->Update();

}

Listing 1: A subroutine – that should be run in parallel – for calculating contingency statistics.

vtkTable* inData;
vtkMPIController* controller = vtkMPIController::New();
controller->Initialize(&argc, &argv);

// Execute the function named Foo on all processes
controller->SetSingleMethod(Foo, &inData);
controller->SingleMethodExecute();

// Clean up
controller->Finalize();
controller->Delete();

Listing 2: A snippet of code to show how to execute a subroutine (Foo()) in parallel. In reality,
inData would be prepared in parallel by Foo() but is assumed to be pre-populated here to simplify
the example.

19

4 Results

Several parallel runs have been executed on Sandia National Laboratories’ catalyst computa-
tional cluster, which comprises 120 dual 3.06GHz Pentium Xeon compute nodes with 2GB of
memory each. This cluster has a Gigabit Ethernet user network for job launch, I/O to storage, and
user interaction with jobs, and a 4X Infiniband fabric high-speed network using a Voltaire 9288
InfiniBand switch. Its operating system has a Linux 2.6.17.11 kernel, and its batch scheduling
system is the TORQUE resource manager [tor].

Whether the requested processes are distributed to one or two to a node is left to the scheduler to
decide. On our system, the default behaviour is to utilize the smallest number of nodes and thus to
use two processes per node. All reported results here were done with two processes per node, with
the exceptions of the single-process run and one two-process run, marked with a ‡, which for an
unexplained reason always failed when run with both processes on the same node.

4.1 Algorithm Scalability

In order to assess speed-up independently of the load-balancing scheme, a series of (pseudo-)
randomly-generated samples is used. Specifically, input tables are created at run time by generating
2 separate samples of independent pseudo-random variables having a centered normal distribution
with the same standard deviation σ > 0. Since our objective is to assess the scalability of the
parallel statistics engines only, equally-sized slabs of data are created by each process in order to
work with perfectly load-balanced cases. For the same reason, the amount of time needed to create
the input data table is excluded from the analysis. In this test, vtkPContingencyStatistics,
with Learn, Derive, and Assess modes on, is executed on this pair of columns, and various clock
times are reported: unlike what was done in the earlier reports for nearly-embarrassingly parallel
engine, the wall clock time is decomposed into several pieces in order to better understand the
scalability of each component of the engine.

With this synthetic test case, we assess:

1. relative speed-up (at constant total work), and

2. scalability of the rate of computation (at constant work per processor).

4.1.1 Relative Speed-Up

Given a problem of size N (as measured in our case by sample size), the wall clock time mea-
sured to complete the work with p processors is denoted TN(p). Then, relative speed-up with p
processors is

SN(p) =
TN(1)
TN(p)

.

20

Table 2. Relative speed-up (at constant total work), with a total
sample size of N = 25,600,000 doubles.

N/p p σ = 5 σ = 50 σ = 200
(sec. / SN(p)) (sec. / SN(p)) (sec. / SN(p))

25,600,000 1 459 / 1.00 700 / 1.00 925 / 1.00
12,800,000 2 234 / 1.96 362 / 1.94 498 / 1.86‡

6,400,000 4 120 / 3.83 185 / 3.79 288 / 3.21
3,200,000 8 59.3 / 7.74 95.0 / 7.38 181 / 5.11
1,600,000 16 30.2 / 15.2 53.1 / 13.2 132 / 7.00

800,000 32 15.1 / 30.4 32.5 / 21.6 111 / 8.33
400,000 64 7.94 / 57.8 24.4 / 28.7 110 / 8.41
200,000 128 4.42 / 104 25.0 / 28.0 112 / 8.26

Evidently, optimal (linear) speedup is attained with p processors when SN(p) = p and, therefore,
relative speed-up results for SN may be visually inspected by plotting SN versus the number of
processors: optimal speed-up is revealed by a line, the angle bisector of the first quadrant.

In order to assess relative speed-up, we use a test case that comprise 2 pseudo-random samples
of size N = 1,000,000, generated by rounding 2 independent standard normal variables with the
same standard deviation σ > 0 to the nearest integer. The values of σ are chosen with increasing
values of {5,50,200} in order to yield contingency tables with varying sizes, for the probability
that any outcome a of bivariate Gaussian draw fall outside the [−3σ,3σ]2 square is only

1−
(

2√
π

Z 3σ

0
e−t2

dt
)2

≈ 0.00539.

With the chosen set of standard deviations, the observed contingency tables have sizes of order
103, 105, and 106, respectively. The overall speedup is a strong function of the contingency table
size as the parallel communication costs for these tables are vastly different.

The numbers of processes p were chosen to be increasing powers of 2, for convenience only:
making use of other values did not modify speed-up results.

The wall clock times obtained on catalyst are provided in Table 2 and plotted in Figure 3. We
observe that with σ = 5, the ensuing local contingency tables are small enough that the cost of the
parallel updates is negligible to the point that the algorithm becomes, effectively, embarrassingly
parallel: the measured relative speed-up is almost optimal, (within 5%, which may also be due
in part to operating system overhead unrelated to the algorithm itself). This remains true until the
decreasing amount of work per processor results in a situation where the the contribution of updates
and overheads – while small in absolute terms – become noticeable relative to the computation
time. With σ = 5 and N = 1,000,000, this trends begins to slightly appear with p = 64, and further

21

1

2

4

8

16

32

64

128

1 2 4 8 16 32 64 128

Sp
ee

du
p,

S
N

(p
)

Number of Processors, p

Theoretical optimal speedup
σ = 5

σ = 50
σ = 200

Figure 3. Relative speed-up at constant total work with a total
data size of N = 25,600,000 doubles.

with p = 128, where the speed-up slightly degrades to about 104 (as opposed to a theoretical
optimum of 128). At some point, the decreasing amount of work per processor will ultimately
result in a situation where communication will dominate computational work, but with σ = 5 we
have not observed, as speed-up continues beyond 128 processes. On the other hand, with larger
values of the standard deviation, and thus with much larger contingency tables to be exchanged
between processes, this trend begins to occur much earlier: specifically, with 16 or more processes
when σ = 50, and as early as with 2 processes when σ = 200. Moreover, past 64 and 32 processes
respectively, no more parallel speed-up is achieved; the Amdahl limit is reached; and speed-down
eventually occurs. Theoretically, one could continue increasing σ until no parallel speed-up can be
achieved at all, effectively turning the algorithm into a serial implementation.

From this we can draw two important conclusions:

1. This algorithm works well with categorical data, not with (quasi-)continuous data. This
was to be expected, for contingency and information statistics are primarily intended for
categorical data, not for continuous measurements.

2. One should be careful (as we have always been) with claims that some algorithms would, or
would not, be a priori amenable to “Map-Reduce” implementations. As this example clearly
shows, the same algorithm can behave as an embarrassingly parallel one, or as a completely
coupled, intrinsically serial one, or anything in between depending solely on the value of
a single input parameter. One should therefore think in terms of a continuum of speed-up
properties, for the same algorithm, and thus be wary about “golden bullets” even when they
are offered and promoted by prestigious companies.

22

4.1.2 Rate of Computation Scalability

Table 3. Rate of computation scalability (at constant load per
processor).

N(p) p σ = 5 σ = 50 σ = 200
(sec. / R) (sec. / R) (sec. / R)

3,200,000 1 57.8 / 1.00 87.9 / 1.00 127 / 1.00
6,400,000 2 58.3 / 1.98 91.6 / 1.91 152 / 1.67

12,800,000 4 59.3 / 3.91 93.5 / 3.76 166 / 3.06
25,600,000 8 59.3 / 7.80 95.0 / 7.40 181 / 5.61
51,200,000 16 60.3 / 15.3 98.3 / 14.3 203 / 10.0

102,400,000 32 60.7 / 30.5 103 / 27.3
204,800,000 64 62.5 / 59.2 113 / 49.8
419,600,000 128 63.1 / 117 128 / 87.9

The rate of computation is defined as

r(p) =
N(p)

TN(p)(p)
,

where N(p), the sample size, now varies with the number of processors p. We then measure
its scalability by normalizing it with respect to the rate of computation obtained with a single
processor, as follows:

R(p) =
r(p)
r(1)

=
N(p)TN(1)(1)
N(1)TN(p)(p)

,

In particular, if the sample size is made to vary in proportion to the number of processors, i.e., if
N(p) = pN(1), then

R(p) =
pTN(1)(1)
TpN(1)(p)

=
pTN(1)(1)
pTN(1)(p)

=
TN(1)(1)
TN(1)(p)

,

and thus, optimal (linear) scalability is also attained with p processors when R(p) = p. Note
that without linear dependency between N and p, the latter equality no longer implies optimal
scalability. Hence, under the above assumptions, scalability can also be visually inspected, with a
plot of R versus the number of processors, where optimal scalability is also indicated by the angle
bisector of the first quadrant.

The rate of computation scalability is now assessed using the same test case as in § 4.1.1, with
the difference that, in order to maintain a constant work per processor, increasingly large samples
are created: specifically, each data sets contains N(p) = np doubles, where n = 3.2× 106 and

23

1

2

4

8

16

32

64

128

1 2 4 8 16 32 64 128

Sc
al

ab
ili

ty
,
R

(p
)

Number of Processors, p

Theoretical optimal scalability
σ = 5

σ = 50
σ = 200

Figure 4. Rate of computation scalability at constant work per
processor of N(p)/p = 3,200,000.

p ∈ {1,2,4,8,16,32,64,128} respectively denote the number of sample points per processor and
the number of processes.

The wall clock times measured on catalyst are given in Table 3 and plotted in Figure 4. When
σ = 5, and thus a relatively small contingency table, the algorithm exhibits nearly optimal scala-
bility, (again within ±5% which does not have to be entirely attributed to the algorithm itself). On
the other hand, with large values of σ, as the global contingency table grows the communication
costs become much more noticeable, but with σ = 50 one continues to observe parallel scalability
past 128 processes, with an overall order of about 0.92. However, with the very large input tables
generated when σ = 200, the system is not able to allocate enough memory for the communication
buffers with more than p = 16 processes, and the execution fails after this point, where an overall
order of about 0.83 was observed.

These observations confirm what was already noticed in § 4.1.1. In particular, the failure to scale
the rate of computation because of a lack of memory when the tables are enormous confirms that
contingency statistics should not be a statistic of choice when dealing with quasi-continuous data
(which, in the context of floating-point representation, amounts to the same as extremely large
discrete data sets). In this case, either a different analysis tool should be used, or the data should be
re-quantized prior to contigency statistics analysis. At any rate, the key observation here is again
that this engine scales optimally when used for what it was intended, and that its performance
degrades as the input data drifts away from the intended category of data.

24

4.2 Algorithm Correctness

In order to assess the algorithm correctness of vtkPContingencyStatistics, we have examined
the statistical models obtained when both Learn and Derive options are turned on with a variety of
input data sets, both very small (which could then be verified point by point) and very large.

In this report, we do not report on each of these this tests cases, which would present very little in-
terest, other than saying that for those who were too large to for manual verification, the validation
method verifies that:

1. the calculated grand total is equal to the sum of the cardinalities of all input tables,

2. the overall cumulative distribution function (CDF) sums to 1 on all processes after the par-
allel updates, and

3. H(X ,Y) ≥ H(X |Y)+ H(Y |X) (and H(X ,Y) = H(X |Y)+ H(Y |X) when X and Y are inde-
pendent)

on all processes after the parallel updates have been performed.

In addition, for large, pseudo-randomly generated data sets whose statistical properties are known,
we also compare the calculated information entropies H(X ,Y), H(X |Y), and H(Y |X) with the
theoretical values. For example, with the same test cases as in § 4.1.1, we have, in theory,
H(X |Y) = H(Y |X) = H(X) = H(Y) since X and Y are independent and indentically distributed.
We thus use, as a first approximation, the entropies1 of the corresponding (but not rounded) normal
univariate and bivariate distributions:

H(N (µ,σ2)) = ln
(

σ
√

2πe
)

and
H(N2(µ,Σ)) = ln

(
2πe
√
|Σ|
)

where µ, σ, and Σ respectively denote the mean, standard deviation, and covariance matrix of these
distributions. Again because of the independence assumption, in our case (X ,Y) is approximated
with a bivariate normal distribution with covariance matrix σ2I2, and thus

√
|Σ|= σ2. The corre-

sponding theoretical values for σ ∈ {5,50,200} are available in Table 4, with 4 significant digits.

Relatively large input sets are used (N = 16×106), in order to mitigate the risk of statistical bias
due to insufficient sampling. The test cases are distributed across p = 4 processes for values of
σ in {5,50,200}. A comparison between theoretical and computed values, also with 4 significant
digits, for one such test run is provided in Table 4, and one can de visu notice an excellent agree-
ment between the computed values and the corresponding theoretical values for the approximating
continuous random variables. It is also interesting to notice that, as σ increases, the discrepancies

1Although to be fully rigorous in the case of continuous random variables we should speak of their differential
entropy, whereas the information entropy as we have defined it in § 2.5 is limited to the case of discrete random
variables. The differential entropy of a random variable with PDF p is defined as −

R
IR p(x) log p(x)dx.

25

Table 4. Theoretical versus computed entropies of 2 independent,
centered normal distributions with standard deviation σ, rounded
to the nearest integer. Computed values are for pseudo-random
samples of size 16,000,000 distributed across 4 processes.

σ H(X ,Y) H(Y |X) H(X |Y)
theoretical computed theoretical computed theoretical computed

5 6.057 6.060 3.028 3.030 3.028 3.030
50 10.66 10.66 5.331 5.326 5.331 5.326

200 13.44 13.38 6.717 6.662 6.717 6.663

between theoretical and computed values increase as well. This is because the input data sets in-
creasingly diverge from ideal Gaussian inputs as the sample size becomes smaller, in relative terms
with respect to the standard deviation. Increasing the sample size further results in an even better
agreement between theoretical and computed values.

26

References

[BPRT09] J. Bennett, P. Pébay, D. Roe, and D. Thompson. Scalable multi-correlative statistics
and principal component analysis with Titan. Sandia Report SAND2009-1687, Sandia
National Laboratories, March 2009.

[P0́8] P. Pébay. Formulas for robust, one-pass parallel computation of covariances and
arbitrary-order statistical moments. Sandia Report SAND2008-6212, Sandia National
Laboratories, September 2008.

[PT08] P. Pébay and D. Thompson. Scalable descriptive and correlative statistics with Titan.
Sandia Report SAND2008-8260, Sandia National Laboratories, December 2008.

[tor] TORQUE Resource Manager. http://www.clusterresources.com/pages/products/torque-
resource-manager.php.

[vtk] VTK Doxygen documentation. http://www.vtk.org/doc/nightly/html.

27

DISTRIBUTION:

1 MS 9159 Philippe P. Pébay, 8963
1 MS 9159 David Thompson, 8963
2 MS 9018 Central Technical Files, 8944
1 MS 0899 Technical Library, 9536

28

v1.31

	Introduction
	The Titan Informatics Toolkit
	Statistics Functionality in Titan

	Contingency Statistics
	Contingency Tables
	Joint and Marginal Distributions
	Conditional Probabilities
	Pointwise Mutual Information
	Information Entropy

	Parallel Statistics Classes
	Implementation Details
	Usage

	Results
	Algorithm Scalability
	Algorithm Correctness

	References

